Welcome to Honors Chemistry II/AP! I hope you have a fun and restful summer. I look forward to seeing you in August.

Please send me a quick email (<u>mary.eisenhauer@knoxschools.org</u>) to confirm you received this packet and to provide me with your email address.

1. Summer Review Assignment – 23 Review Questions (pages 3-6)

- The purpose of the review assignment is to remind you of and sharpen your current skills, so I recommend you wait until August to complete the problems.
- The review assignment is due **Monday August 8th**, the first day of school

2. Memorization Task – polyatomic ions (Page 2)

• The first quiz, on <u>half</u> of the positive ions (those highlighted in yellow), will be given during the first week of school – **Friday August 12th**, with the negative ions quiz coming a week or so after that.

Before the first day of school:

• Work through the Review Assignment. There may be a few questions for which you will need to review Chem 1 material. You can check your answers in the back of the textbook you will receive the first day of school. The review problems must be done on a separate sheet of paper.

I expect you to have mastered or at least be reasonably comfortable with all of Chapters 1 and 2, plus Chapter 3 through Sec. 3.4 of the textbook by the end of the third week of school. We will spend minimal class time reviewing this material. I will be available to help you outside of class if you need it.

• Begin the memorization task – e.g. make flashcards, begin practicing. I have made flashcard sets on Quizlet. To find them, join my class by searching for my class Honors Chemistry 2 and my Quizlet username: ms_eisenhauer

Proposed schedule for the beginning of the school year:

Mon. 8/8

- Sign out textbooks and other support materials
- Discuss summer assignment

Tues. 8/9

Avogadro Goes to Court, dimensional analysis activity

Wed. 8/10

• Chapter 1 and 2 review - quiz on Monday

Thurs. 8/11

- Chapter 3 review
- HW: Prepare for Lab 1 Determining the formula of a hydrate, complete % composition practice problems from textbook

Friday. 8/12

- Positive Ions quiz (see Memorization Packet) HALF positive ions
- Pre-lab Determining the formula of a hydrate

Cations	Aniona
Cations Aluminum Al ³⁺	Anions Acetate C ₂ H ₂ O ₂ -
	_ 3 <u>_</u>
Ammonium NH ₄ ⁺	Arsenate AsO ₄ ³ -
Antimony (III) Sb ³⁺	Bicarbonate HCO ₃ -
(V) Sb ⁵⁺	Binoxalate HC ₂ O ₄ -
Arsenic (III) As ³⁺	Bisulfate HSO ₄ -
$(V) As^{5+}$	Bisulfide HS-
Barium Ba ²⁺	Bisulfite HSO ₃
Bismuth (III) Bi ³⁺	Borate BO ₃ ³⁻
(V) Bi ⁵⁺	Bromate BrO ₃ -
Calcium Ca ²⁺	Bromide Br
Cadmium Cd ²⁺	Bromite BrO ₂ -
Chromium (II) or chromous Cr ²⁺	Carbonate CO ₃ ²
(III) or chromic Cr ³⁺	Chlorate ClO ₃ -
	Chloride Cl-
Cobalt (II) or cobaltous Co ²⁺ (III) or	Chlorite ClO ₂ -
cobaltic Co ³⁺	Chromate CrO ₄ ²⁻
	Cyanide CN-
Copper (I) or cuprous Cu ⁺	Dichromate Cr ₂ O ₇ ²⁻
(II) or cupric Cu ²⁺	Dihydrogen phosphate H₂PO₄
	Fluoride F-
Hydrogen H ⁺	Hydroxide OH ⁻
Hydronium H ₃ O+	Hypobromite BrO ⁻
Iron (II) or ferrous Fe ²⁺	Hypochlorite ClO-
(III) or ferric Fe ³⁺	Hypoiodite IO ⁻
	Iodate IO ₃ -
Lead (II) or pl.umbous Pb ²⁺	Iodide I-
(IV) or plumbic Pb ⁴⁺	Iodite IO ₂ -
	Nitride N ³⁻
Lithium Li ⁺	Nitrate NO ₃ -
Magnesium Mg ²⁺	Nitrite NO ₂ -
Manganese (II) Mn ²⁺	Oxalate $C_2O_4^{2-}$
(IV) Mn ⁴⁺	Oxide O²-
	Perbromate BrO ₄ -
Mercury (I) or mercurous Hg_2^{2+} (II) or	Perchlorate ClO ₄
mercuric Hg ²⁺	Permanganate MnO ₄ -
	Peroxide O_2^2 -
Nickel (II) Ni ²⁺	Phosphate PO ₄ ³⁻
(III) Ni ³⁺	Phosphide P ³⁻
Potassium K ⁺	Phosphite PO ₃ ³⁻
Silver Ag ⁺	Sulfate SO_4^{2-}
Sodium Na ⁺	Sulfide S^{2-}
Strontium Sr ²⁺	Sulfite SO_3^{2-}
	Tartrate $C_4H_4O_{6^{2-}}$
Tin (II) or stannous Sn ²⁺	Thiocyanate SCN-
(IV) or stannic Sn ⁴⁺	Thiosulfate $S_2O_3^{2-}$
$Zinc Zn^{2+}$	

Review Questions from Brown and LeMay: Chemistry the Central Science, 11th edition

Chapter 1 "Introduction: Matter and Measurement" Assignments

Classification and Properties of Matter:

1. In the process of attempting to characterize a substance, a chemist makes the following observations:

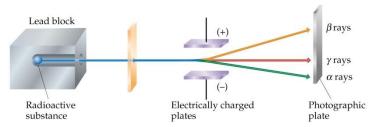
The substance is a silvery white, lustrous metal. It melts at 649°C and boils at 1105°C. Its density at 20°C is 1.738 g/cm³. The substance burns in air, producing an intense white light. It reacts with chlorine to give a brittle white solid. The substance be pounded into thin sheets or drawn into wires. It is a good conductor of electricity. Which of these characteristics are physical properties, and which are chemical properties?

Units of Measurement:

- 2. What power do the following abbreviations represent?
 - a) d
 - b) c
 - c) f
 - d) μ
 - d) M
 - e) k
 - f) n
 - g) m
 - h) p
- 3. a) A sample of carbon tetrachloride, a liquid once used in dry cleaning, has a mass of 39.73 g and a volume of 25.0 mL at 25°C. What is its density at this temperature? Will carbon tetrachloride float on water?
 - b) The density of platinum is 21.45 g/cm³ at 20°C. Calculate the mass of 75.00 cm³ of platinum at this temperature.

Uncertainty in Measurement:

- 4. What is the number of significant figures in each of the following measured quantities:
 - a. 358 kg
 - b. 0.0054 s
 - c. 6.3050 cm
 - d. 0.0105 L
 - e. $7.0500 \times 10^{-3} \text{ m}^3$
- 5. Carry out the following operations, and express the answers with the appropriate numbers of significant figures:
 - a. 12.0550 + 9.05
 - b. 257.2 19.789
 - c. $(6.21 \times 10^3)(0.1050)$
 - d. 0.0577/75.3


Dimensional Analysis:

- 6. The Morgan silver dollar has a mass of 26.73 g. By law, it was required to contain 90% silver, with the remainder being copper.
 - a) When the coin was minted in the late 1800s, silver was worth \$1.18 per troy ounce (31.1 g). At this price, what is the value of the silver in the silver dollar?
 - b) Today, silver sells for \$13.25 per troy ounce. How many Morgan silver dollars are required to obtain \$25.00 worth of pure silver?

Chapter 2 "Atoms, Molecules and Ions" Assignments

The Atomic Theory and The Discovery of Atomic Structure:

7. A negatively charged particle is caused to move between two electrically charged plates, as illustrated below

- a) Why does the path of the charged particle bend?
- b) As the charge on the plates is increased, would you expect the bending to increase, decrease, or stay the same?
- c) As the mass of the particle is increased while the speed of the particles remains the same, would you expect the bending to increase, decrease, or stay the same?
- d) An unknown particle is sent through the apparatus. Its path is deflected in the opposite direction from the negatively-charged particle, and it is deflected by a smaller magnitude. What can you conclude about this unknown particle?

The Modern View of Atomic Structure and Atomic Weights:

- 8. Determine whether each of the following statements is true or false; if false, correct the statement to make it true:
 - a) The nucleus has most of the mass and comprises most of the volume of an atom;
 - b) Every atom of a given element has the same number of protons;
 - c) The number of electrons in an atom equals the number of neutrons in the atom;
 - d) The protons in the nucleus of the helium atom are held together by a force called the strong nuclear force.
- 9. Fill in the gaps in the following table assuming each column represents a neutral atom:

Symbol	⁵² Cr				
Protons		25			82
Neutrons		30	64		
Electrons			48	86	
Mass number				222	207

10. Only two isotopes of copper occur naturally, 63 Cu (atomic mass = 62.9296 amu; abundance 69.17%) and 65 Cu (atomic mass = 64.9278; abundance 30.83%). Calculate the atomic weight (average atomic mass) of copper.

The Periodic Table and Molecules and Molecular Compounds:

- 11. Locate each of the following elements in the periodic table; indicate whether it is a metal, metalloid, or non-metal; and give the name of the element:
 - a) Ti
 - b) Se
 - c) Kr
- 12. Each of the following elements is capable of forming an ion in chemical reactions.

By referring to the periodic table, predict the charge of the most stable ion of each:

- a) Mg
- b) Al
- c) F

Ions and Ionic Compounds:

- 13. Using the periodic table to guide you, predict the formula and name of the compound formed by the following elements:
 - a) Ga and F
 - b) Li and H
 - c) Al and I
- 14. Predict the empirical formula for the ionic compound formed by
 - a) Ca²⁺ and Br⁻
 - b) K^+ and CO_3^{2-}
 - c) $A1^{3+}$ and $C_2H_3O_2^{-}$
- 15. Predict whether each of the following compounds is molecular or ionic:
 - $a. \quad B_2H_6$
 - b. CH₃OH
 - c. LiNO₃

Naming Inorganic Compounds and Some Simple Organic Compounds:

- 16. Give the chemical formula for each of the following compounds:
 - a) aluminum hydroxide
 - b) potassium sulfate
 - c) copper(I) oxide
 - d) hydrobromic acid
 - e) phosphoric acid
 - f) hypochlorous acid
- 17. Write the chemical formula for each substance mentioned in the following word descriptions.
 - a) Zinc carbonate can be heated to form zinc oxide and carbon dioxide.
 - b) On treatment with hydrofluoric acid, silicon dioxide forms silicon tetrafluoride and water.
 - c) Sulfur dioxide reacts with water to form sulfurous acid.

Chapter 3 "Stoichiometry: Calculations with Chemical Formulas and Equations" Assignments

Some Simple Patterns of Chemical Reactivity:

- 18. Write a balanced chemical equation for the reaction that occurs when
 - a) solid magnesium reacts with chlorine gas;
 - b) barium carbonate decomposes into barium oxide and carbon dioxide gas when heated;
 - c) the hydrocarbon styrene, $C_8H_{8(1)}$, is combusted in air;

Indicate whether they are combination (synthesis, decomposition, or combustion reactions)

Formula Weights:

- 19. Calculate the percentage by mass of the indicated element in the following compounds:
 - a) carbon in acetylene, C₂H₂, a gas used in welding
 - b) hydrogen in ascorbic acid, HC₆H₇O₆, also known as vitamin C

The Mole:

- 20. a) What is the mass, in grams, of 2.50×10^{-3} mol of ammonium phosphate?
 - b) How many moles of chloride ions are in 0.2550 g of aluminum chloride?
 - c) What is the mass, in grams, of 7.70 x 10^{20} molecules of caffeine, $C_8H_{10}N_4O_2$?
 - d) What is the molar mass of cholesterol if 0.00105 mol weighs 0.406 g?

Empirical Formulas from Analysis:

- 21. Give the empirical formula of each of the following compounds if a sample contains
 - a) 0.0130 mol C, 0.0390 mol H, and 0.0065 mol O
 - b) 11.66 g iron and 5.01 g oxygen
- 22. What is the molecular formula of each of the following compounds?
 - a) empirical formula CH₂, molar mass = 84 g/mol
 - b) empirical formula NH₂Cl, molar mass = 51.5 g/mol

Quantitative Information from Balanced Equations:

23. Hydrofluoric acid, HF_(aq), cannot be stored in glass bottles because compounds called silicates in the glass are attacked by the HF_(aq). Sodium silicate (Na₂SiO₃), for example, reacts as follows:

$$Na_{2}SiO_{3\ (s)}\ +\ 8\ HF_{(aq)}\ \boldsymbol{\rightarrow}\ H_{2}SiF_{6(aq)}\ +\ 2\ NaF_{(aq)}\ +\ 3\ H_{2}O_{(l)}$$

- a) How many moles of HF are needed to react with 0.300 mol of Na₂SiO₃?
- b) How many grams of NaF form when 0.500 mol of HF reacts with excess Na₂SiO₃?
- c) How many grams of Na₂SiO₃ can react with 0.800 g of HF?